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We study a discrete dynamical system whose evolution is governed by rules 
similar to those of Conway's game of Life but also include a stochastic 
element (parametrized by a "temperature"). Statistical properties that are 
exarnined are density as a function of temperature and entropy (suitably 
defined). A phase transition and a certain "thermodynamic" constant of 
the motion are observed. 

KEY W O R D S  : Discrete dynamical systems; stochastic games. 

1 .  I N T R O D U C T I O N  

In this paper  we study the statistical mechanics o f  a discrete, stochastic 
dynamical  system. The system is a two-dimensional  array o f  squares each 
having two states designated " l iv ing"  or " d e a d . "  The deterministic part  o f  
the dynamics is that  o f  the game o f "  Li fe"  invented by J. C o n w a y Y  ~ Al though 
this system is not  related in any obvious way to a specific physical or  bio- 
logical system, there are various considerations which have led us to explore 
its properties. Our motivations fall into a number  o f  different categories: 
(A) Phys ica l - -microdynamics  o f  a nonequil ibrium system; (B) b io logical - -  
reproduct ion and evolution;  (C) pat tern format ion  and its relation to both  
physical and biological formalisms. We shall discuss each of  these ideas in 
turn. 
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In condensed matter physics, molecular dynamics has been successful in 
explaining the behavior of many phenomena and materials. (2~ These systems 
are generally closed and have a Hamiltonian dynamics. We have sought to 
extend these techniques to other domains, such as the Life game, which is not 
a Hamittonian system, has no energy function, and is completely nonlinear. 
The advantage of using molecular dynamics is that, in principle, the inter- 
action can be treated exactly within the context of the model chosen. This is 
in contrast to the usual differential equations techniques, where increasing 
the complexity of the interaction greatly complicates the set of nonlinear 
differential equations usually involved and therefore makes their solution 
even more difficult. The price one pays for this is that the molecular dynamics 
technique is restricted to finite, and sometimes small, sample sizes. Whether 
or not this causes difficulties depends on the details of the problem being 
investigated and must be examined for each case. 

That the system might have some biological significance is hinted at by 
the very name of the game: Life. However, one must not take this too literally, 
and even thinking biologically the interpretation of the living or dead squares 
can be as macromolecules, genes, cells, whole animals, or even ethnically 
distinct home buyers in an integrated neighborhood. 

Much of the biological interest is sparked by the existence of self- 
reproducing forms. One might ask if there is anything to be learned about 
evolution from this system. The self-reproducing forms could be studied as 
to their robustness when perturbed, their likelihood of  appearance under 
random or other conditions, or their survival when in competition with other 
"organisms" (i.e., self-reproducing forms). As reported in Ref. 1, these 
questions had been investigated by examination of  the evolution of  many 
individual systems. We wish to find ways to extract systematic information 
without exhaustively studying large numbers of arrays. In particular we seek 
ways of getting statistical indications of the emergence of ordered or other- 
wise interesting patterns. 

This leads to what is perhaps the most ambitious of our goals, namely 
the use of physical techniques in fundamental biological questions. One can 
ask whether there is an entropy function which is a suitable measure of  the 
information carried by a gene or even try to find physical or statistical 
indicators of a system's ability to reproduce itself. The Life game certainly 
seems to be a good place to begin asking these questionsl 

Dresden and Wong (3~ have considered the game of Life from much the 
same motivation as we have expressed. However, their approach has been 
to look for analytic solutions from which one might be able to derive exten- 
sions and generalizations. Our approach is in a sense complementary in that 
we will be concerned with analytic solutions, but mainly as a check on 
understanding the important parameters of the evolving dynamic life system. 
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Our feeling is that the analytic approach, although very important for gaining 
initial insights, will become too complex to handle as we eventually complicate 
the system to make it more realistic. 

Given the motivations just described, our first problem was that in the 
Life game one does not have available the usual physical quantities; in 
particular we have not found an analog of a conserved energy. By contrast, 
for a simple molecular dynamics problem one considers an assemblage of 
atoms or molecules with a well-defined force law acting between them and 
then one can write a computer program to keep track of the trajectories of 
all the particles as they scatter off one another due to the forces between them. 
After the computation proceeds for a sufficient time, the thermodynamic 
properties of the resulting array are calculated. These are the usual well- 
known properties such as energy, density, temperature, entropy, pressure, etc. 
The problem for the Life game is to know what to calculate. What are the 
parameters that determine the behavior of  the system; what are the "con-  
stants of the mot ion"  ? Because " L i f e "  does not model any particular natural 
system, we were further faced with a good deal of  arbitrariness in introducing 
variations on the game. We could generalize " L i f e "  in a number of ways, (3~ 
but found that the basic Conway rules provide the richest structure when 
enhanced only by the introduction of a simple stochastic element, to be 
described below. 

In Section 2 we describe formal details of the system. A traditional sort 
of statistical mechanics is the subject matter of Section 3, in which we derive 
equations of state, such as density as a function of temperature, for the Life 
game. We also describe experimental results, i.e., computer simulations which 
show a number of  interesting properties, some of  them accounted for by the 
theory. Section 4 deals with entropy and our use of  this concept. Finally, in 
Section 5 we mention miscellaneous observations and give a general discussion 
of  results. 

2. T H E  M O D E L  S Y S T E M  

The Conway life game is based on a two-dimensional rectangular array 
of squares, each square in one of  two states, " l iv ing"  or "dead ."  At a time t 
let some subset of the squares in the array be living. The living squares at 
time t + 1 are determined by those at time t according to the following 
evolutionary rules: 

1. If  a live square has either two or three live neighbors, it will survive 
in the next generation; otherwise it will die. 

2. If a dead square has exactly three live neighbors, there will be a 
" b i r t h "  in that square and it will be alive in the next generation. 
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All "b i r t h s "  and "dea t h s "  take place simultaneously. Neighbors are defined 
to be the eight squares surrounding the square under consideration, or in 
other terms, the first and second crystallographic nearest neighbors in a 
square planar lattice. 

In the actual system that we have implemented, we have included three 
generalizations. First, we may choose as we please the set of  crystallographic 
nearest neighbors that we wish to consider as neighbors for evolution of the 
system. In fact, although we have explored some other choices, all the work 
reported here has been with the Conway choice. 

Second, we allow a choice of  boundary conditions. We can either let the 
board grow as the living areas expand, or impose fixed or periodic boundary 
conditions. The data reported here were taken with periodic boundary 
conditions on a square array. 

Third, we can allow the birth and survival probabilities to have any value 
from zero to one, which causes the system to have a stochastic component. 
That is, we define Ps as the probability that a square having exactly k living 
neighbors (out of N) either survives (c~ = S and the square had previously 
been alive) or is born (c~ = B and the square had previously been dead). For 
the normal Conway game Ps (k) = 1 for k = 2 or 3, p~k) __ 1 for k = 3, and 
they are both zero otherwise. In general, the p(k) can have any value between 
zero and one. 

As a specialization of this general stochastic facility, we introduce a 
particular stochastic component  which we denote as " temperature ."  Tem- 
perature acts to provide a finite probability for birth or death no matter what 
the number of  actual live neighbors might be. The temperature is defined in 
the following manner. Let 

P~k)(T) = [P~k)(0) + pT]/(1 + T) (1) 

where p is the density of  live squares on the entire array. This choice has two 
virtues: (t) the T = 0 limit is just the normal Conway game, and (2) the 
temperature part  conserves density at equilibrium. Specifically, let the density 
at t be p and at t + 1 be p'. Suppose on the basis of  the Conway step alone 
p' = p. Then with the above definition of temperature it is still true that 
{p')  = p. To see this let q(k, or) (~ = 0 or 1) be the probability that a square 
has exactly k living neighbors if it is alive (e = 1) or is dead (~r = 0). Then 

N 

(p ' )  = ~ [pP~sk)q(k, 1) + (1 -- p)P~k'q(k, 0)1 (2) 
k = 0  

Substituting Eq. (1) and observing that ~k q(k, e) = 1, we obtain 

1 20 pT (P')  - 1 + T = [pq(k, 1)Ps(k)(0) -t- (1 - p)q(k, 0)P(Bg)(0)] + 1 -t--------T (3) 
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The sum in Eq. (3) is just the new value of  p based on the P~k~(0) and if this 
yields p the entire expression yields p also. Therefore, temperature does not 
provide a direct driving force for the density. It serves merely to alter the 
pattern of live cells, thereby destroying some of the order. At the infinite- 
temperature limit all p~k~ equal p, so that the array becomes completely 
random with density p. 

There is some similarity between our temperature and that used in the 
stochastic evolution of dynamical Ising models. <4~ In those systems spin flips 
that lower energy are more likely to occur than those that raise energy. At 
zero temperature, energy-lowering flips always occur and energy-raising flips 
never occur. Nonzero temperature is a measure of the extent to which those 
rules are violated. From our definition, too, the extent to which the system 
can deviate from its zero-temperature evolution law (the "pure  Conway 
rules") is also a monotonic function of temperature. But we are not able to 
extend the analogy beyond this, because we do not know of a conserved 
energy for the Conway dynamics. For  the dynamical Ising model, the exact 
stochastic rule for flipping or not flipping depends on energy and temperature 
in such a way that by considering the equilibrium state toward which those 
dynamics tend, the temperature parameter in the stochastic dynamics can 
be identified with the usual thermodynamic temperature. The lack of  an 
energy definition prevent us from making such a firm identification; mono- 
tonicity is the best we can do. 

3. E Q U A T I O N S  OF S T A T E  

In this section we establish theoretically and experimentally the simplest 
thermodynamic properties of the Conway game. Without looking at the 
"reproduct ive"  properties of various special configurations, we ask only, 
what is the average density of living squares as a function of temperature ? 
In later sections we shall deal with some of the qualitative phenomena 
encountered in the process of  reaching an equilibrium density, such as the 
formation of a membrane between living and dead regions of the board, but 
for now we confine our attention to the global equilibrium properties. 
"Thermodynamic"  is often taken to mean the limit that the size of  the array 
goes to infinity. We feel that most of our conclusions are valid in that limit, 
too (i.e., we work with arrays large enough for finite size effects to be negli- 
gible), but we have made no systematic study of  this point. 

3.1. Zero-Temperature Limit 

As an introduction to the kind of  calculation that we shall later do with 
greater accuracy, we estimate the change of p on successive generations in the 
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pure Conway game (zero temperature) with the assumption that the initial 
distribution of living squares is purely random and has negligible correlations. 

The exact evolution law for the Conway game is 

%(t + 1) = 8(3, ~ '  a(t)) + %(t)3(2, ~ '  or(t)) (4) 

where %(t) is a variable taking the value + 1 if square a is alive at time t and 
zero if the square is dead at that time. The 8 is the Kronecker 8 and equals 
one if its arguments are equal and zero otherwise. The primed ~ indicates a 
sum over the eight neighbors of the square a. The density of living squares is 
the average over a of %(t) and this is denoted by brackets. Thus 

1 (5) 

where M is the number of squares in the system. The evolution of p(t) is 
found by averaging Eq. (4). The average of the first 8 is the probability of 
square a having exactly three live neighbors. By translational invariance (true 
by virtue of our periodic boundary conditions) it is possible to look at any 
square ~ in this calculation--there are no corners or edges. Given that the 
overall density of live squares is p(t), the probability that for any eight 
squares there are exactly three live ones among them (and in the absence of 
correlations) is 

(~)pa(1 _ p)5 (6) 

Reasoning similarly for the last term in Eq. (4), we obtain 

p ' =  (83)Pa(1- p)5 + (~)pa(1-p)6=28pa(1-p)5(3-p) (7) 

where p' = p(t + 1) and p -- p(t). If  the system has a long-term steady state, 
then p' will equal p. Setting p' -- p in Eq. (7) yields an equation for p whose 
real solutions are 

p = 0 and p ~ 0.37017 (8) 

Without correlations the system moves to the density given by the fixed 
points of Eq. (7). Figure 1 shows the behavior of pt+l/pt as a function of pt, 
calculated from Eq. (7). Notice that for the curve marked "uncorrelated" the 
system evolves to the value p = 0.37 for 0.19 < p~ < 0.56. Outside this range 
of initial densities p = 0 is the end result. The uncorrelated approximation, 
although not valid for the pure Conway game, is applicable to the case of 
temperatures sufficiently high (T > 2) to destroy the Conway correlations. 
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Fig. 1. Density at time t -I- 1 as a function of density at time t for the standard Conway 
rules. 

Experiments carried out in this temperature range yield an equilibrium 
density o f  0.370 _+ 0.006, in excellent agreement with Eq. (8). 

I t  is easy to generalize the foregoing to evolut ionary rules described by 
the general vectors P(~. In the absence o f  correlations we have, in place o f  

Eq. (7), 

p,= ~ (~)0~(1- p)N-~[pP~,~, + (1 - p)e~q (9) 
to=0 

This formula  allows us to explore various other possible rules. Figure 2 shows 
an example o f  fixed points for  a rule where, at least at high temperature,  two 

nonzero densities are possible. ~ 
Improvement  upon  the estimate o f  Eq. (7) consists in taking into 

account  correlations between squares. This can be done in a systematic 
manner  by formally taking the expectation o f  Eq. (4), which we shall now do. 

The f-function can be written as a sum of  products  of  Cs. To see this, 
we define a set L to be L = {1 ..... l} and K t o  be any subset o f  L o f  cardinality 
k. Thus K can be written K = {~1,..., c~} with each c~ an integer between 1 

4 For this case Pge~ = P~s ~ for all k, and the values are (0, 0, 1, 0, 0, 1, 1, 1, 0) for 
(k = 0 ..... 8), respectively. 



1.75 

1.50 

1.25 

1.00 

+ 

0.75 

0 .50  

0.25 

0 .20  

1 I I I 

J 

0.o I I 
0.0 0 .40  0.60 

p(t) 
0 .80 1.00 

300 L .S .  Schulman and P. E. Seiden 

Fig. 2. Density at time t + 1 as a function of density at time t for a system with two 
nonzero stable points. 

and l. N o w  suppose there is a Kronecker  8, 8(k, ~ '  a~), where the sum in the 
argument is over some  l a's. Then, letting % = 1 - %, we have 

�9 i=l K 

where the sum is over all subsets K having exactly k elements.  There are (~) 
terms in the sum. 

The problem of  evaluating the expectat ion o f  Eq. (4) has now been 
reduced to that o f  evaluating expectations o f  products.  A convenient  way to 
do this, while taking into account various correlations,  is through the use o f  
cumulants.  The expectation o f  the &function can be expressed as a function 
o f  second-order cumulants as follows(5~: 

01) 
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where 

<~>~ (12) 

is the sum of the cumulants for all relevant pairs, in this case all pairs from 
the eight neighbors of the central square. The quantity l is equal to 8, the 
number of neighbors of the Central square. In Eq. (11) a combinatorial 
coefficient is interpreted to be zero if its lower argument exceeds its upper 
argument. 

To obtain the expectation of Eq. (4) we also require the expectation of 
quantities of  the form 

(13) 

where % is associated with the central square. This can be shown to be (5~ 

x / d - k - l +  ( s  ] (14) 

with the same convention for combinatorial coefficients. The first sum over 
cumulants is simply the sum over the eight neighbors of square zero and the 
second sum is, as before, the sum over pairs of these neighbors. 

To express sums of the form of Eq. (12) in a standard way we provide a 
notation for cumulants. Referring to Fig. 3, the cumulant L~ is the cumulant 
associated with the squares 0 and i of  that figure. By symmetry, we shall lump 

Fig. 3. Labeling convention for the neighbors of 
a given square (0). 

2 

9 

4 7 

3 i 6  
I 

5 S 
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together horizontal and vertical versions of  similar cumulants; thus no 
separate definition is given for cumulants between pairs like 2-3 (counted 
together with 0-2) or 3-4 (counted together with 0-1), etc. With this notation 
it is found that 

<c~T~}c = 2(4L1 + 2L2 + 3L3 + 4L4 + Ls) ~ 2A 
r < s  

05) 
<aoar}c = 4(L1 + Le) -= 4B 

We are now in a position to combine all our information on the 
expectation of  Eq. (4). The result is 

p' = 56paF a + 2803/26 

+ 2A(20pa/2 a + 15pa/24 - 30p2/2 a - 12p~/25 + 6p/2 s + p/26) 

+ 4B(7p/26 - 21p2/2 s) (16) 

where/z = 1 - p. 
Equation (16) does not provide adequate information to allow for 

iteration from generation to generation, since there is no way to iterate the 
cumulants that appear in B and A. To overcome this problem one can develop 
a formula for the cumulants in generation t + 1 in terms of  the density in 
generation t. We here present an outline and the results only. (s) Let L be the 
cumulant associated with a pair of  squares a and b. Thus 

L = <~o~b)c = (~o~b5 - < ~ ) < ~ )  (17) 

Then its expectation in generation t + 1 is given by the product of  two 
formulas of the form (4): 

t / t 

t t 

= <8(3, Z (~)) 3(3, 2(b))) + [<8(3, Y(a))a b ~(2, 2(~ 

+ (~(3, 2(b))% 8(2, 2(~)))] + (or, 3(2, E("))ab 3(2, 2(~ (18) 

where superscripts a or b on sums indicate sums over the eight neighbors of  
the appropriate square. Primes refer to generation t + 1. i Clearly, using 
Eq. (10), we can write quantities in Eq. (18) as sums of products of  random 
variables, except that now the products may be somewhat more complicated. 
A novel feature which enters here is that squares of a's for the same square 
may now enter and because ~2 = or, special treatment of such terms is re- 
quired. Because of  the complexity of  the terms, we neglect cumulants in our 
evaluation of Eq. (18). Thinking of  cumulants as second-order terms, we are 
just evaluating the second-order terms themselves to first order. This will 
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ultimately have to be justified numerically. In the language of statistical 
physics, our very first evaluation of Eq. (4), i.e., Eq. (7), was lowest order 
mean field theory, while our present estimates are the next correction to mean 
field theory. 

We now present the results of the rather tedious calculation of cumulants 
L1 through L5: 

L ( +  (P')s = J--~o (~ ) (3 -4 j )  206-j/z6+j + 2 j=o ~ (~)(2 4 j ) ( 2  3-j) pa-Jt*7+' 

+ 2 ( ~ ) ( 1  3 j )  uO4-//~ s + ' _  (19) 

2 2 

. p4-JF1~ (20) + 
;=o J 1 - j /  

j=o J=o - J /  

; 3 5 p6_j/zg+ j (21) + 
j=o J 2 - j  

;=o ,=o 6 - )  L~'+(P')2 (~)(3 6_j)p6_,tza+j+2 ~ (~)(3 6 

+ ~ 2- j !  . / = 0  

1 
Ls' + (O')= = J=o ~ ( J ){  (3 l j) 2p6-'la?+'+ 2(3 _7j) (2 7_ J!'~Pa-Y#*~ 

7 t p6-~),11 +j~ (23) + 2- j !  ) 
In the foregoing expressions the quantity p' may be computed in terms of 
generation t quantities with neglect of cumulants. That is, maintaining first- 
order accuracy in the cumulants, p' can be expressed as a function of p alone, 
as in Eq. (7). 

The curve marked "correlated" in Fig. 1 is the plot of Eq. (16). It is seen 
from this curve that (p) = 0.19 for 0.10 < Ot < 0.67. For Ot outside this 
range the density evolves to zero. In contrast to the uncorrelated case, this 
value is not in good agreement with experiment. As shown in Table I, the, 



304 L .S .  Schulman and P. E. Seiden 

T a b l e  I. F i n a l  A r r a y  D e n s i t y  a s  t --+ co 

Experiment Theory 

Uncorrelate& 
O 0.37 +_ 0.05 b 0.370 
p[o> 0.377 +_ 0.05 0.376 
p~m 0.375 + 0.04 - -  

Correlate& 
p 0.029 __+ 0.009 0.189 
p(z ~ 0.229 + 0.008 0.299 
p[~ 0.260 _+ 0.30 - -  

The uncorrelated experimental results are taken from high- 
temperature experiments. 

b The ranges given on the experimental results are not errors, 
but are the variations observed over the number of experi- 
ments run. 

c Correlated implies the T = 0 limit. 

experimental value for p is far smaller than theory predicts. The experimental 
value represents the stable separated patterns that remain after evolution is 
complete. There exist a number of  absolutely stable geometries in the pure 
Conway game (1~ which, if  formed far enough from other live squares, cannot 
be destroyed at zero temperature. The experimentally observed density is 
just the final density of  these stable forms. As we shall see when we discuss 
the T r 0 case, the theory gives a poor  account of  the global behavior of  the 
low-temperature system. 

As the system evolves toward its final state the array will contain a large 
proport ion of completely dead areas. Although the total array area may be 
large, the live cells will be concentrated in a number of  small regions. For  
this reason, we introduce the concept of  "local  density." That  is, we confine 
attention to those regions in which the live cells exist and disregard the totally 
dead areas. 

We have considered two definitions of  local density. In the first, which 
we call p~0~ we exclude all squares that have no live nearest neighbors. We 
call these squares " v a c u u m "  and denote their number by V. Redefining 
Eq. (5) for p(L ~ we have 

oo)/ M- 
Similarly, for the calculation of  (p)  given above, we find 

(P> (25) 
O~~ = 1 - <(1 - ~o)  8 (0 ,  ~(o~ ~)) 

where <(1 - ~o) 8(0, ~ '  ~)> is the probability of  finding a " v a c u u m "  square. 
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The second form of the local density, Okra, is derived from an evaluation 
of the average number of " b o n d s "  existing between live cells in the array. 
If  the array were completely populated (p = 1), each cell would have N live 
nearest neighbors and there would be N/2  bonds per live cell. If we count the 
existing bonds between live cells (B) in a given array we can evaluate a local 
density in the form 

p(L B) = 2B/Nn (26) 

where n is the total number of  live cells (=  pM). 
Table I gives the experimental and theoretical values for all three 

densities for both the correlated and uncorrelated cases (we have not derived 
a theoretical expression for p~m). The agreement between theory and experi- 
ment is much better for p(L ~ than for p. For the uncorrelated case the experi- 
mental data (taken for T > 2) are in excellent agreement with theory for 
both local and global densities. 

3.2. Finite Temperature 

So far in this section we have treated the evolution as a deterministic 
process. We next take into account temperature. Referring to Eq. (3), we 
define 

<p0'> = ~ [pq(k, 1)P~k>(0) + (1 - p)q(k, 0)_P~k>(0)] (27) 
k = O  

This is exactly the quantity we have been calculating in this section and for 
the pure Conway game, to second-order cumulants, is the p' of  Eq. (16). 
Hence in this approximation 

<P0'> = %(P) + A'VA(p) + B%(p) (28) 

where W'~(p), a = 0, A, B, are polynomials in p, which can be read off from 
Eq. (16). It follows from Eq. (3) that 

<p'> = [1/(1 + T)l(<Po'> + pT) (29) 

Our goal is to deduce an iteration law for the density. Equation (29) is as yet 
incomplete in this respect because the effect of  temperature on the iteration of  
A and B (which are sums of order two cumulants) is still needed. 

In order to evaluate cumutants ('h%>c we introduce a slightly different 
notation to describe the probabilistic evolution law. Let X}~ ) (i runs over 
squares of the array, a = B or S, and k = 0,..., N) be a collection of  random 
variables taking the values 0 and 1, all independent of  one another, and 
having the expectation values 

<X}ff)> = P~> (30) 
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independent of i. Then the evolution law (4) is generalized to 

a~(t + 1) = ~ a(k, E' a(t))(a,(t)X[ff ~ + [1 - ~r,(t)]X/~ ~) (31) 
h : = O  

[The expectation value of Eq. (31) is just Eq. (3).] Cumulants arise from 
products of ~'s. For any two random variables 31 and az the second cumulant 
is in fact the second moment of 31 - ( ,q)  and ,r2 - (32). Thus 

(~176 = (elez) -- ((rl)(cr2) = ((~1 -- ((h))(e2 -- (a2))) (32) 

We use Eq. (32) to write the cumulant for any two squares 1 and 2 in the 
presence of the temperature effect as 

(al(t  + i)~2(t + 1))c 

= ([k=~o 3(k, E(1)){aa(t)X~)+[1-al(t)]X~)} - (p')] 

x [j=~o 3(j, E(2'){a2(t)X~+ { 1 -  a2(t)]X~} - ( p ' ) ] ~  (33) 

The angular bracket in Eq. (33) involves both the expectation of the X}~ ~ and 
the sums or expectation values over squares treated in Eq. (18) et seq. These 
expectations are entirely independent, the X}~ ~ being independent of position 
and of each other. Consequently each X[ff ) in Eq. (33) can be replaced by 
p~k~ and the angular bracket takes on its more restricted meaning. The 
averaging that remains is therefore the same as done earlier and straight- 
forward manipulation of Eq. (33) yields 

<a~(t + 1)az(t + 1))c = ~ (a~(t + 1)a2(t + 1)) ~ (34) 

where the symbol ( )o refers to the cumulants computed in Eqs. (19)-(23) 
above, i.e., the zero-temperature cumulants based on deterministic Conway 
evolution. 

Now A and B are linear combinations of cumulants. By Eqs. (19)-(23) 
zero-temperature iteration of A and B yields 

<A(t + 1)>r=0 = QA(P), (B(t + 1)>r=o = QB(P) (35) 

where QA and QB are deduced from Eqs. (19)-(23) and the definitions (15). 
It follows that at finite temperature 

(A(t + 1)> = Oa(p)/(1 + T) 2, <B(t + 1)) = O~(p)/(1 + T) 2 (36) 

The iteration law for p is obtained by combining Eqs. (27)-(29) to yield 

1 
(p(t + 1)) = ~ [Wo(p) + ./Jtt~a(p) + Btt'B(p) + pT] (37) 

1 +  
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Fixed points of the iteration law (36) and (37) provide equilibrium densities 
and correlations. A stable iteration provides a stable equilibrium since the 
iteration law is modeled on the evolution law of the system. The search for the 
fixed point can be further simplified by combining the two equations, 
eliminating A and B, and obtaining 

P = q~o(P) + (1 + T)-2[Qa(p)WA(p) + QB(p)WB(p)] (38) 

This equation, through its fixed points, provides a definite theoretical predic- 
tion for p(T), the density as a function of temperature. This prediction is 
shown in Fig. 4 along with the experimental results. There are three things 
to be noted in this figure. First, as previously mentioned, the agreement 
between theory and experiment is very poor for the low-temperature range. 
Second, at high temperature the density approaches the value predicted for 
the uncorrelated case, Eq. (8), and is in good agreement with experiment. 
Third, a distinctly new phenomenon is seen to occur. A "phase transition" 
is observed in which the system moves from a state with (p) = 0 to (p) = 
0.37. The transition is quite sharp and is apparent in both the theoretical 
curve and the experimental data, although the transition temperatures differ. 
Figure 5 presents similar data for the local density. In this case the agreement 
at low temperatures is considerably better, but the discrepancy in the position 
of the transition temperature remains. 
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Fig. 4. Density at t --+ oo as a function of temperature. 
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Fig. 5. Local density at t -~ co as a function of temperature. 

4. E N T R O P Y  

A system that begins randomly populated will, under the propagation 
rules of the Conway game, develop structure and correlations. One way to 
measure the increasing order in the system is by means of  a quantity we shall 
call entropy and which is defined in close analogy with the correspondingly 
named quantity in statistical mechanics. The general idea is that we shall 
coarse-grain our system and measure the extent to which living squares do 
or do not cluster. 

A J x J board is broken into grains of  size j x j. A coarse-grained 
description of the state of the system is provided by the sequence (n~), 
i = 1 . . . .  , ( j / j ) 2 ,  where ni is the number of live squares in the ith grain. The 
entropy associated with this coarse-grained description is given by the 
logarithm (taken to the base 2) of  the total number of microscopic states that 
can be associated with the given sequence. Thus ~ 

s = log (39) 

s If the set of sequences (o~1, a12 ..... e~N), a~ = _+ l, is considered the phase space of the 
dynamical system, then the definition (39) is precisely the usual entropy for the given 
coarse-graining. (See, for example, Reif. (6~ His specification of the parameters 
"Yl . . . .  , y ~ "  is equivalent to some coarse-graining.) 
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This expression can be used directly to calculate the entropy of the arrays 
generated in the model calculation. The quantity S is the entropy per square 
and it is worth noting (although we shall not use this fact) that for large J 
and j it is approximately equal to 

j2 ( n~ n~ J - ~ (40) 
S -  j2 ? l o g ? +  log ----27-- 

i = 1  

which is of the general form for the entropy of a probability distribution. 
We may estimate the entropy theoretically in the following fashion. The 

entropy associated with a single grain occupied by exactly k live squares is 

1 (;) 
j-~ log (41) 

(this statement is not rigorously true, as entropy has only been associated 
with macroscopic states; however our forthcoming expression for the 
expectation of S will be approximately correct for large j2). The entropy of a 
collection of grains each having probability P(k) of being occupied by k live 
squares is then given by 

(S)  = )5 ~ P(k) log (42) 
k = O  I(. 

If there are n~ living squares on a board, the density of living squares is 
p = njJ  2. If  these nz living squares are randomly distributed on the board 
with no correlations among them, then the probability of finding a j • j 
grain populated by exactly k living squares is 

(;) P(k) = Ok(1 _ p)j2_~ (43) 

Using Eqs. (42) and (43), we obtain for the expectation of the entropy for a 
distribution without correlations 

(S )  = ?  Pk(1 - P)J2-~l~ k (44) 
k : = l  

For t h e j  x j grain it is possible to include in P(k) the effect of correla- 
tions and to calculate the expected value of S with some given order of 
correlations. In general 

P(k) = (8(k, ~ %)) (45) 

the sum within the 8 being taken over all squares in the grain. The 8 can be 
written as a sum of products of a's and r's. Specifically 

a ( k , ~ % ) =  ~ 1 ~  ~,. . .%,r,~. , . . .r=p (46) 
p e r m u t a t i o n s  
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Evaluation of the expectation of the &function is performed exactly as in 
Section 3. Simply replace l by j2 and reinterpret the sum appearing there 
(which was for 3 by 3 squares and excluded the center square) as the sum over 
all squares in a j x j grain. The result, up to correlations involving no more 
than two squares, is 

P(k)=(8(k, ~ a ) ) =  (k2)p~/zJ2-k + [r<~ ~ @r~)c] [ (k  2-2'2} pk-21 xj2-~ 

-- 2(Jk2-- ~)pk-llxJ2-k-l + (J22 2)OklzJ2-~-2 ] 
(47) 

where as before we have the convention that if the lower index in a combina- 
torial coefficient is greater than the upper index, the coefficient is zero. The 
sum is defined to be 

= ~ ~ (48) 
r < S  S = 2 T = 1  

We now list the relevant cumulants for various j. Cumulants involving three 
squares have been neglected. Thus, when the expectation of entropy is 
calculated using the forthcoming formulas, a deviation from measured 
entropy can be attributed to three or more square correlations. 

F o r j  = 2 

@r%)c = 2(2L1 + L2) (49) 
r < t  

For j = 3 

@r%)c = 2(6L1 + 4L2 + 3La + 4L~ + Ls) (50) 
T < 8  

F o r j  = 4 

(crr%)c = 2(12L1 + 9L2 + 8Lz + 12L4 + 4L5 + 4L6 + 6L7 + 4L8 + Lg) 
T < S  

(51) 

where cumulant labels are as defined in Fig. 3. The entropy, including 
correlations, is then obtained from Eqs. (42) and (47)-(51). 

Figure 6 shows the experimental entropy as a function of generation (t) 
for the zero-temperature case determined by using Eq. (39). The entropy is a 
strong function of density since it measures the multiplicity of states available 
to the system, and the number of states in itself is a strong function of 
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Fig. 6. Entropy and density as a function of time. 

density. In order to determine if there exists a contribution to the entropy due 
to the ordering in the system, we normalize (S)  by dividing by Eq. (44), the 
entropy of a random system of density p. If the entropy exhibited in Fig. 6 
is simply due to a random distribution, the normalized entropy (S)  will be 
equal to unity. 

The upper curves in Fig. 6 show (S).  Rather remarkably, the average 
normalized entropy decreases with time for the order of 40-50 generations, 
after which it remains constant even though the density continues to decrease 
by a factor of ten. The fluctuations in the entropy are roughly given by n-112. 
The entropy calculated from Eqs. (42) and (47)-(51) is shown as the con- 
tinuous line in Fig. 6. It exhibits the same behavior as the experimental data, 
although its value is slightly smaller. 

It is tempting to ascribe this decrease in entropy to the order induced by 
the Conway rules. If that is true, the asymptotic value of the entropy could 
be used directly as a measure of order. Furthermore, it would indicate that 
after the order builds up during the initial phase of the evolution it remains 
constant throughout the rest of the evolutionary cycle, and is intrinsic to the 
evolutionary rules themselves. At present this is only a hypothesis. In any 
event, we have found an example of a "constant of the motion" for this 
system. 

Another indication of the feasibility of using (S)  as a measure of order 
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is shown in Fig. 7. In this figure, we plot the asymptotic value of (S )  as a 
function of temperature. It is clear that as the temperature increases, the 
entropy also increases and approaches unity, indicating complete disorder. 
In addition, the entropy also exhibits a phase transition. At low temperatures 
the entropy is roughly constant and jumps sharply to a value close to unity at 
T _~ 0.28. This value is slightly smaller than the transition temperature 
observed in the density data (Fig. 5), which is 0.32. 

Entropy and normalized entropy as here defined may be expected to 
yield information about the evolution and ordering of other dynamical 
systems besides the Conway system. One could, for example, study the 
evolution of order and the distance scale of that ordering for the dynamical 
Ising model, in particular when the system is close to its critical temperature. 
Although we expect the ordering in the dynamical Ising model to be qualita- 
tively different, especially in that nothing so exotic as self-reproducing forms 
should emerge, nevertheless the entropy results should not differ too much 
from those for the Conway game. This expectation is based on our successful 
theoretical calculation (above) of entropy based on two site correlations 
alone. The success of this calculation is also a bit disappointing, since it 
suggests that our entropy does not capture the richness (necessarily involving 
higher order correlations) of the self-reproducing property. 
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5. D I S C U S S I O N  

To some extent this paper represents an exercise in equilibrium and non- 
equilibrium statistical mechanics. Our main success in this vein is in the 
description of the equilibrium state at high temperature: on the one hand, 
we have a clean "experimental" setup, and on the other, a simple form of 
mean field theory that provides an adequate description of the experiment. 

At lower temperatures there is a phase transition--here, too, theory and 
experiment are in qualitative agreement, even if they disagree on the value of 
the transition temperature. Below the transition the theoretically predicted 
global density is far too large, although we are able to find a " loca l"  density 
whose theoretically predicted value (again, in mean field theory) is in better 
agreement with experiment. 

The source of the discrepancies at low temperature is easily understood 
and were there a reason to improve the theory in that domain it should not be 
too hard to do so. Basically what is happening is that the system becomes 
extremely nonuniform. Great patches of vacuum develop; the progress of 
vacuum into living areas is steady and inexorable, while advances from 
living regions do not penetrate very well into vacuum. The multisquare 
correlations associated with vacuum are neglected in our theory and so this 
spreading phenomenon is not well described. An interesting feature of low-T 
patterns is the membrane that separates living from dead regions. This has 
distinctly different properties from other living regions: in particular, it is 
more densely populated. An easy estimate of its density turns out to be 
remarkably accurate. In particular, boundary or "membrane"  squares have, 
on the average, three dead squares to one side. On the other hand, overall 
equilibrium (neglecting correlations) requires that the average square in a 
living region have 0.37 x 8 ~ 3 living neighbors. Thus one would expect the 
density of living squares in the membrane to be high enough to guarantee 
about three living neighbors to each square. This is (8/5) x 3 ~ 5 neighbors, 
or a density of about 0.6. Such a figure indeed emerges when one studies 
various arrays, although it is hard to pin it down too precisely because of 
uncertainties inherent in the definition of membrane. The local density we 
define is designed to measure the density within the living region; hence the 
better agreement of theory and experiment. 

Another goal of this paper was to see whether the Conway rules, which 
tend on the average to drive systems to self-reproducing forms of low 
periodicity (in time), would reveal, to statistical indicators, any reflection of 
their ordering abilities. To this end we measured the entropy of the evolving 
array. We found that from an initially random state, order developed and 
entropy decreased in this effectively open system. However, aside from this 
general trend, a far more striking effect was noted for the entropy when it 
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was normalized in a certain way. For a given density and a given coarse- 
graining (the latter involved in the definition of entropy) a random distribu- 
tion of living squares in which states of  neighboring squares are completely 
uncorrelated yields a certain expectation value for entropy. When the mea- 
sured entropy is divided by this uncorrelated entropy the resulting ratio S is 
very nearly constant. For  equilibrium states it remains relatively constant 
despite fluctuations in both p and S, and even more remarkably for non- 
equilibrium states, although p may change by more than a factor ten, 
remains constant. Finally, as would be expected in the case of  a first-0rder 
phase transition, the entropy is a strong function of temperature in the region 
of  the phase transition and increases sharply as the system enters the dis- 
ordered high-temperature state. 
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